

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 689 (2004) 1331-1336

www.elsevier.com/locate/jorganchem

Dichlorosilylene and dichlorogermylene transfer to alkylidenephosphanes

Wolf-Walther du Mont *, Thorsten Gust, Emma Seppälä, Cathleen Wismach

Institut für Anorganische und Analytische Chemie der Technischen Universität, Techn. Univ. Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany

Received 2 September 2003; accepted 14 October 2003

Abstract

The detection of Me₃GeSiCl₃, a product from the Si₂Cl₆ cleavage of trimethylgermylphosphanes, as a useful new source of SiCl₂ moieties, as well as new trapping reactions of SiCl₂ and GeCl₂ with functional alkylidenephosphanes (Me₃Si)₂C=PX (X = halide or dialkylphosphanyl [PRR'; R = *i*-propyl, R' = *t*-butyl]) are reviewed. In the primary step of the reactions, insertion into the P–X bond is competing with addition to the P=C bond. SiCl₂ and GeCl₂ insertions are followed by dimerisation reactions leading to new highly functional *P*-phosphanylalkylidenephosphanes, that may rearrange to diphosphenes like (XCl₂Si)(Me₃Si)₂C–P=P–C(SiMe₃)₂SiCl₂X (X = F, Cl, P-*i*-Pr₂) or (Cl₃Ge)(Me₃Si)₂C–P=P–C(SiMe₃)₂GeCl₂PRR' or/and react further with SiCl₂ or GeCl₂. Reaction of (Me₃Si)₂C=P-PRR' (R = *i*-propyl, R' = *t*-butyl) with Me₃GeSiCl₃ leads in a very selective fashion to a complete P=C double bond cleavage by unique double SiCl₂ addition with formation of a stable *P*-phosphanylphosphadisiletane. © 2003 Elsevier B.V. All rights reserved.

Keywords: Trichlorosilyl germanes; Dichlorosilylene; Dichlorogermylene; Phosphaalkenes; Diphosphenes

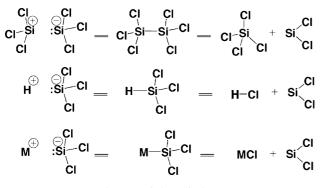
1. Introduction

Among the dichlorides of group 14 elements, SiCl₂ is the synthetically least available compound: the reactive intermediate CCl₂ is easily available by a number of α -elimination reactions like those of HCCl₃ or of PhHgCCl₃ (Seyferth's reagent), GeCl₂ can be stored as a dioxane or as a phosphane complex, and SnCl₂ as well as PbCl₂ are commercially available stable compounds [1].

2. Dichlorosilylene equivalents

Early work on SiCl₂ revealed, that solid materials of this composition are polysilanes (with Si–Si bonds) implying silicon in its tetracoordinated state [2]. Recently, polymeric *trans*-chain-like SiCl₂ has been characterised after attempted sublimation of the tetramer Si₄Cl₈ [3].

0022-328X/\$ - see front matter 0 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2003.10.015


Pure monomeric carbene-analogous SiCl₂, however, is only available by high-temperature methods that limit its availability in organic and organometallic chemistry [4].

"Hidden SiCl₂ functions" (Scheme 1) are present in trichlorosilylmetal compounds (when they would undergo α -elimination of metal chloride, related to *Seyferths* CCl₂ source), in trichlorosilane (when it undergoes – thermodynamically unfavourable – α -elimination of hydrogen chloride), and in hexachlorodisilane (when it undergoes α -elimination of silicon tetrachloride).

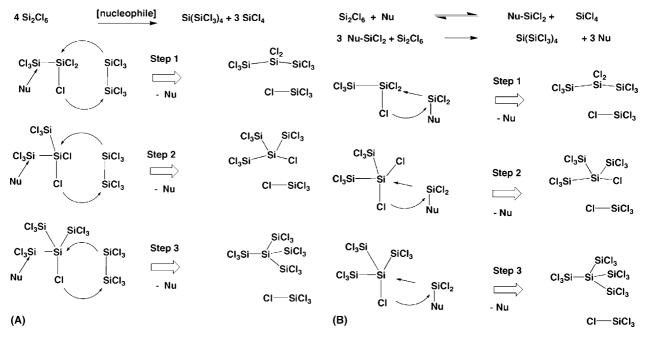
Catalysis by weak nucleophiles (amines, phosphanes) leads to elimination of SiCl₄ from Si₂Cl₆ with formation of highly branched polysilanes. The exact mechanism of this disproportionation is not known; two alternatives were proposed by Urry [5], 4-center mechanism A and silylene mechanism B (Scheme 2). In way A, SiCl₃ groups would be transferred from Si₂Cl₆ to nucleophilecoordinated di- and oligosilane substituting Cl atoms from "most branched Si atoms"; way B involves the α -elimination of SiCl₄ leading to nucleophile-coordinated SiCl₂ that inserts into Si–Cl bonds of the "most

^{*}Corresponding author. Tel.: +49-5313915302; fax: +49-5313915387.

E-mail address: w.du-mont@tu-bs.de (W.-W. du Mont).

Scheme 1. SiCl₂ equivalents.

branched Si atoms". Cooper and Gilbert proposed, that in a similar way $SiCl_3^-$ anions give rise to the formation of new Si–Si bonds [5].

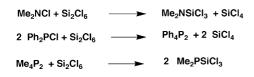

Trying to extend this scheme, Urry proposed in 1970, that related amine-catalysed reactions of Me₃SiSiCl₃ and of Me₃SnSiCl₃ should lead to Me₃SiSi(SiCl₃)₃ or to Me₃SnSi(SiCl₃)₃, both accompanied by SiCl₄. This hypothesis was, however, not subjected to experimental evidence at that time.

An important application of $SiCl_2$ would be its reactions with organic chlorides leading to a variety of trichlorosilyl compounds. Trihalogenosilyl compounds are of general importance as trifunctional precursors for the synthesis of highly functionalised silicon compounds, like branched silicones and silsesquioxanes.

As a synthetic alternative to "free" SiCl₂, the trichlorosilylation of related organic chlorides with HSiCl₃ in presence of amines (*Benkeser* reaction) [6] or halide ions [7] has made available a number of alkyltrichlorosilanes and bis-trichlorosilanes. By use of trimethylsilyltriflate as starting material, the HSiCl₃/NEt₃ reagent has also been applied for Si–Si-bond formation [8]. This method is, however, limited to substrates that are unreactive towards HCl or organic ammonium salts which are the unavoidable byproducts from the HSiCl₃ method.

In phosphorus chemistry, the HSiCl₃ method has, apart from its application for $P^V \rightarrow P^{III}$ deoxygenation or desulfuration reactions [9], for long only been used for the hydrogenation of chlorophosphanes furnishing primary or secondary phosphanes (RPH₂ or R₂PH) [10]. Species with P–Si bonds have been proposed for long to be intermediates of these hydrogenations [10]. Later, in course of such a reaction Schmutzler et al. recognised the formation of a trichlorosilylphosphane Ph₃CP(SiCl₃)H by ³¹P NMR [11]. Subsequently we found, that under strictly anhydrous conditions, a number of alkyl- and alkyl(diorganylamino)chlorophosphanes can be transformed straightforwardly into the corresponding trichlorosilylphosphanes with help of the HSiCl₃/NEt₃ reagent [12].

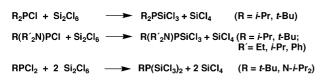
Tetraalkyldiphosphanes cannot be reduced using the HSiCl₃ method; they are, however, reactive towards Si₂Cl₆. Si₂Cl₆ is a valuable reagent that can substitute SiCl₂ or HSiCl₃ on certain occasions: Its application for $P^V \rightarrow P^{III}$ deoxygenation or desulfuration reactions has been recognised for long [9,13], and the dismutation-like trichlorosilylation of Me₄P₂ with Si₂Cl₆ providing two equivalents of Me₂PSiCl₃ as well as the reduction of



Scheme 2. A, B: Urry's mechanistic alternatives for Si₂Cl₆ disproportionation [5].

W.-W. du Mont et al. | Journal of Organometallic Chemistry 689 (2004) 1331-1336

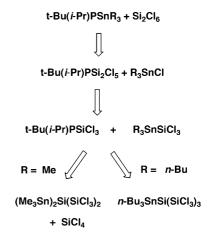
RCI + HSiCl ₃ + NEt ₃	→	RSiCl ₃ + HNEt ₃ Cl	(R = alkyl)
$R_2PCI + HSiCI_3 + NEt_3$	->	R ₂ PSiCl ₃ + HNEt ₃ Cl	(R = <i>i</i> -Pr, <i>t</i> -Bu)
RPCI ₂ + 2 HSiCI ₃ + 2 NEt ₃	->	RP(SiCl ₃) ₂ + 2 HNEt ₃ Cl	(R = <i>i</i> -Pr, <i>t</i> -Bu, N- <i>i</i> Pr ₂)
R ₃ GeCI + HSiCI ₃ + NEt ₃	->	R ₃ GeSiCl ₃ + HNEt ₃ Cl	(R = Me, Et)
$R_2GeCl_2 + 2 HSiCl_3 + 2 NEt_3 \rightarrow R_2Ge(SiCl_3)_2 + 2 HNEt_3CI (R = Me, Et)$			


Scheme 3. Benkeser trichlorosilylation [6] and its extension to chlorophosphanes [12] and – germanes [22].

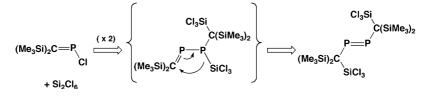
Scheme 4. MacDiarmid's hexachlorodisilane reactions [14].

 Ph_2PCl furnishing Ph_4P_2 have long ago been reported by MacDiarmid et al. in a single short paper [14]. (Scheme 4).

Extending this MacDiarmid trichlorosilylation concept to other tetraalkyldiphosphanes and to a number of chloro- and dichlorophosphanes (Scheme 5) allowed the reductive SiCl₃ transfer to phosphorus compounds under aprotic conditions [15]. From these reactions, no evidence for a role of Si₂Cl₆ as source of SiCl₂ was provided; the reaction of Si₂Cl₆ with dipyridyl that allowed to prepare the coloured [dipySiCl₂] complex remains a single example [16]. Formally, however, the chlorophosphane trichlorosilylation with Si₂Cl₆ is related to the GeCl₂ insertion into P-Cl bonds furnishing trichlorogermylphosphanes [17]. This holds for a P-chloroalkylidenephosphane: Attempted MacDiarmid trichlorosilylation of the alkylidenephosphane $(Me_3Si)_2C = PCl$ with Si_2Cl_6 gave not a simple dismutation-like trichlorosilylation, but two different dimers of (Me₃Si)₂C=PSiCl₃ were identified, a P-phosphanylphosphaalkene intermediate and the stable product (a diphosphene!) of this reaction (Scheme 6) [18]. With GeCl₂-dioxane, the related diphosphene was isolated [18].



Scheme 5. Extension of *MacDiarmid*'s reaction to alkyl- and aminochlorophosphanes [12,15]. The fact, that Si_2Cl_6 "dismutates" with tetraalkyldiphosphenes [14,15] like *i*-Pr₄P₂ straightforwardly to *i*-Pr₂PSiCl₃ [(*i*-Pr₂P)₂SiCl₂ is not observed in the reaction mixture] stimulated us to evaluate, if related dismutations of P–Si–, P–Ge–, and P–Sn– bonds with the Si–Si bond from Si₂Cl₆ would open a further way to trichlorosilylphosphanes, now accompanied by new species with Si–Si-, Si–Ge– or Si–Sn–bonds [15,19].

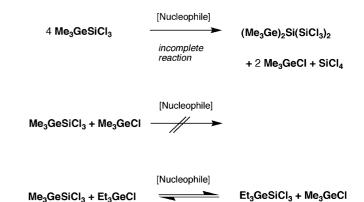

Experimentally, the hypothetic, P-Ge + Si-Si=P-Si + Ge-Si dismutation turned out to follow a more complex reaction path [15,20], because silyl-, germyl- and stannylphosphanes react with Si₂Cl₆ in the first step by formation of pentachlorodisilanylphosphanes (R₂PSi₂ Cl₅) and chlorosilanes, germanes or stannanes (transsilylation-like reactions at phosphorus, see Scheme 7). Pentachlorodisilanylphosphanes, however, act as reductive trichlorosilylation agents towards Me₃GeCl and R₃SnCl (R = Me, Et, *n*-Bu), leading to the initially desired silylgermanes and silylstannanes R₃ESiCl₃ (E = Ge, Sn), that suffer from subsequent decomposition [19.20].

As an alternative pathway to R_3ESiCl_3 (E = Ge, Sn), *Benkeser*-type reductive trichlorosilylations of chlorogermanes and of chlorostannanes appeared to be a useful synthesis; again, however, the products suffer from decomposition under the reaction conditions. The related disilane Me₃SiSiCl₃ is known to decompose base-catalysed furnishing Me₃SiCl and polysilanes [21].

Only germanium derivatives ($R_3GeSiCl_3$; R = Me, Et) could be isolated as pure compounds in moderate

Scheme 6. Reaction of a chloroalkylidenephosphane with Si₂Cl₆ [18].

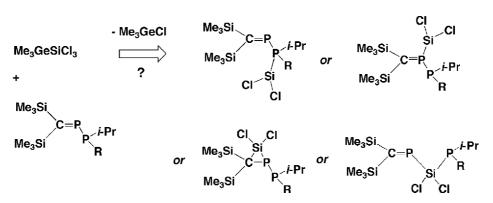
yield (Scheme 3) [22]. This stimulated our present work to study nucleophile-catalysed SiCl₃ or SiCl₂ transfer reactions involving trichlorosilyl compounds $R_3GeSiCl_3$ and $R_2Ge(SiCl_3)_2$ with the aim to exploit their potential as sources of nucleophile-coordinated SiCl₂ that may be as useful as the well-known complexes of GeCl₂ with ethers, amines and phosphanes in germylene chemistry.


3. Dismutation behaviour of trichlorosilylgermanes R₃GeSiCl₃ and R₂Ge(SiCl₃)₂

The *Benkeser*-type synthesis of Me₃GeSiCl₃ (1) (Scheme 1) is affected by its decomposition to the branched compound $(Me_3Ge)_2Si(SiCl_3)_2$ (2), whereas a related decomposition of Me₂Ge(SiCl₃)₂ (3) does not take place under the reaction conditions [23].

Pure 1 is thermally perfectly stable; only in presence of nucleophiles disproportionation takes place. Adding triethylamine to pure samples of 1 revealed, that formation of 2 is incomplete and that 2 is accompanied by Me₃GeCl and SiCl₄. When about equivalent amounts of Me₃GeCl are added to samples of 1, subsequent addition of NEt₃ as "disproportionation catalyst" (see Scheme 2) does not initiate disproportionation of 1: "Me₃GeCl is stabilising 1".

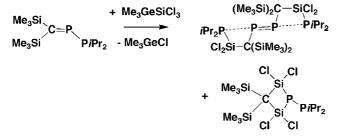
To evaluate if added Me₃GeCl plays a role in a dynamic equilibrium, Et₃GeCl was added instead of Me₃GeCl: again, disproportionation does not take place, but now the presence of NEt₃ induces a Cl/SiCl₃ exchange reaction between the two kinds of trialkylgermyl groups. Adding Me₃GeCl to Et₃GeSiCl₃ (4) and a catalytic amounts of NEt₃ leads to the same equilibrium mixture (Scheme 8).


These observations allow to suggest, that trichlorosilylgermanes 1 and 4 are – similar as Si_2Cl_6 – activated by nucleophiles either through adduct formation or by α -elimination under formation of nucleophile-coordinated dichlorosilylene (Scheme 2).

Scheme 8. Nucleophile-catalysed reactions of Me₃GeSiCl₃ (1).

An experimental probe would be trapping reactions that do not involve organic organoelement halides (thus excluding S_N reactions of transient or latent $SiCl_3^-$ anions, see Scheme 2). A very useful azadienetype trapping reagent, that would meet these requirement, had been featured by Karsch et al., who "extract" a SiCl₂ moitey out of the HSiCl₃/amine system [24]. As alternative reagents, that combine sufficient nucleophilicity and high reactivity towards carbene-analogous species, we chose a sterically tuned set of P-phosphanylalkylidenephosphanes [25]. Reactions of *P*-phosphanylalkylidenephosphanes with phosphinidenes and with sulfur or selenium (that are formally also to be regarded as carbene analogous moieties) are known. Phosphinidenes prefer to add to the P=C double bond [26], whereas sulfur and selenium start their reaction sequence by inserting into P-P bonds, then adding to tricoordinated phosphorus, before they add to the P=C double bond, leading to dithio- and diselenophosphinato-substituted thia- or selenaphosphiranes [25].

Related products were also to be expected from reactions of P-phosphanyl-alkylidenephosphanes with SiCl₂ or GeCl₂ (Scheme 9).


Scheme 9. Possible interactions of of P-phosphanylalkylidenephosphanes with SiCl₂.

4. Reactions of SiCl₂ and GeCl₂ sources with bis(trimethylsilyl)alkylidenephosphanes

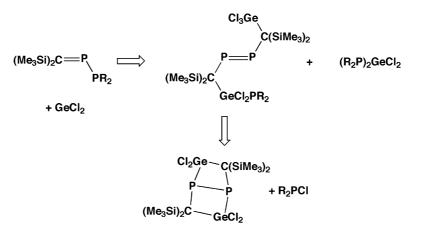
P-Di-*i*-propylphosphanylbis(trimethylsilyl)alkylidenephosphane reacts with **1** furnishing two main products, a di-*i*-propylphosphanyl-substituted diphosphene and a di-*i*-propylphosphanyl-sustituted 2,3-disilaphosphetane (Scheme 10) [27]. The ratio of these products is determined by the amount of **1** added to the trapping reagent: the 1:1 ratio favours the diphosphene, excess **1** favours the heterocylic product.

The diphosphene formation appears analogous to that of the $(Me_3Si)_2C=PCl/Si_2Cl_6$ reaction (Scheme 6) [18]; in the latter case a transient ³¹P-NMR signal at +371 ppm suggests the formation of $(Me_3Si)_2C=PSiCl_3$ [28] that is apparently the precursor of the transient "unsymmetric" dimer from Scheme 6; in the former case neither hypothetic $(Me_3Si)_2C=PSiCl_2-P-i-Pr_2$ nor an unsymmetric dimer was observed when the reaction was monitored by ³¹P-NMR.

With 1 as a source of SiCl₂ added to $(Me_3 Si)_2C=PCl$, ³¹P-NMR monitoring allowed to trace the transient +371 ppm ³¹P-NMR signal as well as large amounts of the unsymmetric dimer, the symmetric diphosphene, and another species that gives a ³¹P-

Scheme 10. SiCl₂ transfer to di-*i*-propylphosphanylbis(trimethylsilyl)alkylidenephosphane [27].

NMR pattern that is closely related to that of the phosphanyl-substituted 2-phospha-1,3-disiletane from Scheme 10 [28]. The surprising double SiCl₂ attack on the P=C bond is achieved only by silylgermane 1, but not by Si_2Cl_6 .


When the GeCl₂dioxane complex reacts with *P*-dialkylphosphanylbis(trimethylsilyl)-alkylidenephosphanes, only *unsymmetric* diphosphenes, accompanied by dichlorogermanes (R_2P)₂GeCl₂, were observed by solution NMR (Scheme 11) [23].

A solid diphosphene (R = i-Pr) was characterised by a crystal structure determination at low temperature, but all compounds decompose at room temperature with liberation of R_2PCl and a bicyclic diphosphane [23]. When $SnCl_2$ is added to the above unsymmetric diphosphenes, the PR_2 group is transferred from Ge(IV) to Sn(II), and Cl exchange from Sn(II) to Ge(IV) furnishes the symmetric diphosphene [Cl₃Ge(Me₃Si)₂C]₂P₂. Similarly, the diphosphene from Scheme 10 is cleaved by SnX_2 (X = F, Cl) to give symmetric diphosphenes [XCl₂Si(Me₃Si)₂C]₂P₂ by PR₂/X exchange reaction [29].

Extensions of this study to further phosphaalkenes, iminophosphanes and related substrates as well as to silylgermanes with different substitution patterns are under way.

5. Summary

Compound 1 is a new source for SiCl₂ transfer reactions under mild, aprotic conditions. It shows analogies to Si₂Cl₆, but also enhanced reactivity towards *P*-phosphanylalkylidene phosphanes giving P=C double bond cleavage that has not been observed in related reactions with GeCl₂ or other carbene analogs. The mechanistic aspects of this reaction require further studies.

Scheme 11. P-dialkylphosphanylalkylidenephosphane cleavage with GeCl₂ [23].

Acknowledgements

We thank Prof. H.C. Marsmann for ²⁹Si-NMR measurements, Prof. P.G. Jones for structure determinations, and the *Deutsche Forschungsgemeinschaft* for financial support.

References

- W. Kirmse, Carbene, Carbenoide und Carbenanaloge, Verlag Chemie, Weinheim, 1969.
- [2] R. Schwarz, G. Pietsch, Z. Anorg. Allg. Chem. 232 (1937) 249– 256.
- [3] (a) J.R. Koe, D.R. Powell, J.J. Buffy, S. Hayase, R. West, Angew. Chem. 110 (1998) 1514–1515;
 - (b) Angew. Chem. Int. Ed. Engl. 37 (1998) 1441-1442.
- [4] P.L. Timms, Inorg. Chem. 7 (1968) 387-389.
- [5] (a) C.J. Wilkins, J. Chem. Soc. (1953) 3409–3412;
 (b) G.D. Cooper, A.R. Gilbert, J. Am. Chem. Soc. 82 (1960) 5042–5044;
 - (c) G. Urry, Acc. Chem. Res. 3 (1970) 306–312, and literature citations.
- [6] R.A. Benkeser, Acc. Chem. Res. 4 (1971) 94-100.
- [7] Y.S. Cho, S.-H. Kang, J.S. Han, B.R. Yoo, I.N. Jung, J. Am. Chem. Soc. 123 (2001) 5584–5585.
- [8] W. Uhlig, A. Tzschach, Z. Chem. 29 (1989) 335.
- [9] K. Naumann, G. Zon, K. Mislow, J. Am. Chem. Soc. 91 (1969) 7012–7022, and literature citations.
- [10] H. Fritzsche, U. Hasserodt, F. Korte, Chem. Ber. 98 (1965) 1681– 1687.
- [11] V. Plack, J.R. Görlich, A. Fischer, H. Thönessen, P.G. Jones, R. Schmutzler, Z. Anorg. Allg. Chem. 621 (1995) 1080.
- [12] (a) L.-P. Müller, W.-W. du Mont, J. Jeske, P.G. Jones, Chem. Ber. 128 (1995) 615–619;
 (b) W.-W. du Mont, L.-P. Müller, L. Müller, S. Vollbrecht, A. Zanin, J. Organomet. Chem. 521 (1996) 417–419;
 (c) L.-P. Müller, A. Zanin, W.-W. du Mont, J. Jeske, R. Martens, P.G. Jones, Chem. Ber. 130 (1997) 377–383.
- [13] (a) G. Zon, K.E. DeBruin, K. Naumann, K. Mislow, J. Am. Chem. Soc. 91 (1969) 7023–7027;
 (b) K.E. De Bruin, K. Naumann, G. Zon, K. Mislow, J. Am. Chem. Soc. 91 (1969) 7027–7030.

- [14] T.A. Banford, A.G. MacDiarmid, Inorg. Nucl. Chem. Lett. 8 (1972) 733.
- [15] (a) R. Martens, W.-W. du Mont, L. Lange, Z. Naturforsch. b 46 (1991) 1609;
 - (b) R. Martens, W.-W. du Mont, Chem. Ber. 125 (1992) 657.
- [16] (a) D. Kummer, H. Köster, M. Speck, Angew. Chem. 81 (1969) 574–575;
 - (b) Angew. Chem. Int. Ed. Engl. 8 (1969) 599;
 - (c) D. Kummer, H. Köster, Angew. Chem. 81 (1969) 897;
 - (d) Angew. Chem. Int. Ed. Engl. 8 (1969) 878.
- [17] (a) M. Karnop, W.-W. du Mont, P.G. Jones, J. Jeske, Chem. Ber./ Recueil 130 (1997) 1611–1618;
 (b) W.-W. du Mont, M. Karnop, J. Mahnke, R. Martens, C. Druckenbrodt, J. Jeske, P.G. Jones, Chem. Ber./ Recueil 130 (1997) 1619–1623.
- [18] A. Zanin, M. Karnop, J. Jeske, P.G. Jones, W.-W. du Mont, J. Organometal.Chem. 475 (1994) 95–98.
- [19] R. Martens, W.-W. du Mont, Chem. Ber. 126 (1993) 1115.
- [20] W.-W. du Mont, L. Müller, R. Martens, P.M. Papathomas, B.A. Smart, H.E. Robertson, D.W.H. Rankin, Eur. J. Inorg. Chem. (1999) 1381–1392.
- [21] U. Herzog, G. Roewer, J. Organomet. Chem. 544 (1997) 217–223.
- [22] L. Müller, W.-W. du Mont, F. Ruthe, P.G. Jones, H.C. Marsmann, J. Organomet. Chem. 579 (1999) 156–163.
- [23] W.-W. du Mont, E. Seppälä, T. Gust, J. Mahnke, L. Müller, Main Group Metal Chem. 24 (2001) 609–612.
- [24] H.H. Karsch, F. Bienlein, A. Sladek, M. Heckel, K. Burger, J. Am. Chem. Soc. 117 (1995) 5160–5161.
- [25] J. Mahnke, A. Zanin, W.-W. du Mont, F. Ruthe, P.G. Jones, Z. Anorg, Allg. Chem. 624 (1998) 1447–1454.
- [26] (a) R. Streubel, E. Niecke, Chem. Ber. 123 (1990) 1245–1251;
 (b) E. Niecke, R. Streubel, M. Nieger, Angew. Chem. 103 (1991) 103–105;

(c) Angew. Chem. Int. Ed. Engl. 30 (1991) 90.

[27] (a) W.-W. du Mont, T. Gust, E. Seppälä, C. Wismach, P.G. Jones, L. Ernst, J. Grunenberg, H.C. Marsmann, Angew. Chem. 114 (2002) 3977–3979;

(b) Angew. Chem. Int. Ed. Engl. 41 (2002) 3829-3831.

- [28] E. Seppälä, W.-W. du Mont, T. Gust, J. Mahnke, L. Müller, First European Silicon Days, München 2001, Abstract P27; E. Seppälä, Dissertation TU Braunschweig, 2004, in preparation.
- [29] T. Gust, Dissertation TU Braunschweig, 2003, in preparation.